Государственное автономное учреждение дополнительного профессионального образования «Смоленский областной институт развития образования» (ГАУ ДПО СОИРО)

PACCMOTPEHO

на заседании Учёного совета ГАУ ДПО СОИРО Протокол № 1 от 31 января 2022 г.

УТВЕРЖДЕНО

Приказом ректора ГАУ ДПО СОИРО от 31 января 2022 г. № 10-од

ДОПОЛНИТЕЛЬНАЯ ПРОФЕССИОНАЛЬНАЯ ПРОГРАММА ПОВЫШЕНИЯ КВАЛИФИКАЦИИ «Основы интернета вещей. Arduino»

ГАУ ДПО СОИРО

(объем 36 часов)

Авторы-составители:

Антонов Д.Б., Кудрявцева Т.В., Туркина Т.С.

Пояснительная записка

Цель: формирование профессиональной компетенции педагогов в области разработки проектов с использованием устройств на основе микроконтроллера Arduino.

Целевая аудитория: учителя информатики, педагоги дополнительного образования ОО Смоленской области.

Формы обучения: очная с ДОТ и ЭО.

Реализация программы направлена на совершенствование следующих трудовых функций педагога:

№ п/п	Наименование	Код	Уровень (подуровень) квалификации
1	Общепедагогическая функция. Обучение	A/01.6	6
2	Развивающая деятельность	A/03.6	6
3	Педагогическая деятельность по реализации		
	программ основного и среднего общего	B/03.6	6
	образования		

Планируемые результаты обучения:

Слушатель, освоивший программу, должен:

- 3.1. *Обладать профессиональными компетенциями*, включающими в себя способность:
- планировать и реализовывать учебную деятельность обучающихся с использованием современных информационных, образовательных и иных ресурсов;
- организовывать и регулировать учебную деятельность обучающихся, направленную на изучение современных сред моделирования и программирования;
- разрабатывать проекты с использованием устройств на основе микроконтроллера Arduino.
 - 3.2. владеть:
- навыками, связанными с информационно-коммуникационными технологиями, ИКТ-компетентностями;
- навыками развития у обучающихся алгоритмического мышления, творческих способностей, аналитических и логических компетенций;
- навыками организации учебной деятельности обучающихся с использованием ДОТ и ЭО;
- навыками грамотной разработки проектов с использованием устройств на основе микроконтроллера Arduino
 - навыками поиска информации и ее применения при решении

практических задач.

3.3. уметь:

- применять современные образовательные технологии, включая информационные и цифровые образовательные ресурсы, и средства обучения;
- организовать самостоятельную деятельность обучающихся, в том числе исследовательскую;
 - использовать микроконтроллер Arduino для создания устройств;
- применять программное обеспечение Fritzing и облачный сервис iocontrol.ru при разработке проектов в концепции Интернета вещей;
- планировать учебный курс и учебные занятия по направлению «Основы интернета вещей. Arduino»;
- уметь применять методики оценивания результатов проектной деятельности.

3.4. знать:

- способы структурирования учебного материала в области моделирования и программирования (на примере образовательного направления «Основы интернета вещей. Arduino»;
- современные методы организации учебной деятельности, используемые на учебных занятиях по направлению «Основы интернета вещей. Arduino»;
- особенности обучения детей проектированию на основе микроконтроллера Arduino;
- возможности использование сервиса iocontrol.ru для управления микроконтроллерами через Интернет.

Организационно-педагогические условия образовательного процесса:

- ✓ кадровые: наличие у слушателей высшего или среднего профессионального образования без предъявления дополнительных требований к педагогическому стажу и квалификационной категории;
 - ✓ материально-технические:
 - 1) Аппаратное и техническое обеспечение:
- а) Рабочее место: стационарный компьютер, монитор, наушники, WEB-камера, источник бесперебойного питания, комплект клавиатура + мышь, МФУ (принтер, сканер, копир), доступ к сети Интернет;
- в) Презентационное оборудование: моноблочное интерактивное устройство, напольная мобильная стойка для интерактивных досок или универсальное настенное крепление.
- 2) Программное обеспечение: системное программное обеспечение, прикладное программное обеспечение; профильное программное обеспечение:

среды программирования Arduino IDE, s4A, среда виртуального моделирования электрических схем и электронного оборудования Fritzing, онлайн-платформа iocontrol.ru.

- 3) Среда для проведения видеоконференций.
- 4) Учебная среда для организации дистанционного обучения.
- ✓ *информационно-методические*: инструктивные карты для проведения практических работ, тезисы лекций, методические рекомендации и др.

УЧЕБНЫЙ ПЛАН стажировки по теме «Основы интернета вещей. Arduino»

Цель *обучения*: формирование профессиональной компетенции педагогов в области разработки проектов с использованием устройств на основе микроконтроллера Arduino.

Категория слушателей: учителя информатики, педагоги дополнительного образования ОО Смоленской области.

Календарный учебный график:

Объём программы: 36 академических часов

Продолжительность обучения: 6 учебных дней

Срок обучения: 13–20 апреля 2022 г. **Форма обучения**: очная с ДОТ и ЭО

Стажировочная площадка: Центр цифрового образования детей «IT-

куб» г. Смоленск (г. Смоленск, ул. Попова, д. 40/2)

Режим занятий: 6 академических часов в день

Количество учебных групп: 1, подгрупп: 1

	Название образовательных модулей	Количество часов					Формы
№ п/п		Всего	Аудиторных занятий		ДОТ и ЭО		промежуточной и итоговой
			Лекц.	Практ.	Лекц.	Практ.	аттестации
1.	Диагностический	2	0	0	0	2	Тестирование
2.	Проектирование устройств на основе микроконтроллера Arduino	29	0	6	0	23	Самостоятельная работа
	Итоговая аттестация	5	0	0	0	5	Зачет
	Итого:	36	0	6	0	30	

УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН стажировки по теме «Основы интернета вещей. Arduino»

Цель *обучения*: формирование профессиональной компетенции педагогов в области разработки проектов с использованием устройств на основе микроконтроллера Arduino.

Категория слушателей: учителя информатики, педагоги дополнительного образования ОО Смоленской области.

Календарный учебный график:

Объём программы: 36 академических часов

Продолжительность обучения: 6 учебных дней

Срок обучения: 13–20 апреля 2022 г. **Форма обучения**: очная с ДОТ и ЭО

Стажировочная площадка: Центр цифрового образования детей «IT-

куб» г. Смоленск (г. Смоленск, ул. Попова, д. 40/2)

Режим занятий: 6 академических часов в день

Количество учебных групп: 1, подгрупп: 1

№ п/п	Название образовательных модулей	Количество часов					ФИО
		Всего	Аудиторных занятий		ДОТ и ЭО		преподавателя, степень (звание),
			Лекц.	Практ.	Лекц.	Практ.	должность
1.	Диагностический	2	0	0	0	2	
1.1.	Входная диагностика	1	0	0	0	1	Кудрявцева Т.В., руководитель Центра цифрового образования детей «ІТ-куб» г. Смоленск
1.2.	Итоговая диагностика	1	0	0	0	1	Кудрявцева Т.В., руководитель Центра цифрового образования детей «ІТ-куб» г. Смоленск
2.	Проектирование устройств на основе микроконтроллера Arduino	29	0	6	0	23	
	Руководство стажировкой						Туркина Т. С., к.п.н., методист Центра цифрового образования детей «ІТ-куб» г. Смоленск
2.1.	Введение в Интернет вещей (IoT). История, основные понятия и технологии.	5	0	0	0	5	Антонов Д.Б., преподаватель Центра цифрового образования детей

		Количество часов					ФИО
№ п/п	Название образовательных модулей	Всего	Аудиторных занятий		ДОТ и ЭО		преподавателя, степень (звание),
			Лекц.	Практ.	Лекц.	Практ.	должность
							«ІТ-куб» г. Смоленск
2.2	Микроконтроллер Arduino. Среды программирования Arduino IDE и S4A. Использование макетной платы и различных электронных компонентов для реализации проектов.	6	0	6	0	0	Антонов Д.Б., преподаватель Центра цифрового образования детей «ІТ-куб» г. Смоленск
2.3	Виртуальное моделирование электрических цепей, схем и электронного оборудования с помощью программного обеспечения Fritzing.	6	0	0	0	6	Вятошин Р.А., преподаватель Центра цифрового образования детей «IT-куб» г. Смоленск
2.4	Использование сервиса іосоntrol.ru для управления микроконтроллерами через Интернет.	6	0	0	0	6	Антонов Д.Б., преподаватель Центра цифрового образования детей «IT-куб» г. Смоленск
2.5	Методические аспекты реализации образовательных программ по основам Интернета вещей и Arduino.	6	0	0	0	6	Антонов Д.Б., преподаватель Центра цифрового образования детей «ІТ-куб» г. Смоленск
	Зачет	5	0	0	0	5	Кудрявцева Т.В., руководитель Центра цифрового образования детей «ІТ-куб» г. Смоленск
	Итого:	36	0	6	0	30	

Содержание программы

Рабочая программа модуля № 1. Диагностический модуль Диагностика слушателей

Входная и итоговая диагностика профессиональных компетенций учителя в области предметных знаний на базовом уровне.

Тестовое задание для проведения диагностики:

- 1. Одна из самых быстрорастущих областей ІТ-индустрии это:
- А. Интернет вещей;
- B. 5G;
- C. Mobile phone;
- D. Умный дом.
- 2. Микроконтроллер это:
- А. Небольшая плата, которая управляет устройством в интернете вещей.
- В. Высокотехнологичное оборудование, миникомпьютер, который позволяет получать сигналы с датчиков и обрабатывать их;
 - С. Необходимый компонент для существования интернета вещей;
 - **D.** Все ответы верны.
- 3. Датчики метана отправляют данные о содержании газа в воздухе каждые 5 минут, независимо от того, превышен он или нет. Нужно перепрограммировать систему так, чтобы сигнал поступал только в случае опасности. На каком уровне системы эффективнее изменить программу?
 - А. На уровне сервера;
 - В. На уровне микроконтроллера;
 - С. На уровне платформы;
 - D. Все ответы верны.
 - 4. Платформами интернета вещей являются:
 - A. Amazon Prime, Zigbee;
 - B. Bluetooth, DecaWave, Яндекс.Облако;
 - C. Microsoft Azure, IBM Bluemix;
 - D. Google Drive, Mail.облако.
- 5. В школе установили батареи с электронными термостатами. Они отслеживают и передают температуру. Если воздух достаточно прогрелся, то термостат перекрывает батарею до тех пор, пока температура вновь не опустится до определенного уровня. Как злоумышленники могут навредить этой системе отопления?
- А. Подключиться к термостату и отправлять с него ложные данные о температуре;

- В. Подключиться к серверу и отправить команду всем термостатам на перекрытие батареи;
- С. Злоумышленник может сделать абсолютно все вышеперечисленное;
- D. Перехватывать и подделывать сигналы, добавлять в систему ложные термостаты, выводить на платформе неверные данные.
 - 6. Интернет вещей это:
- А. множество датчиков, устройств, механизмов и приводов, не связанных между;
- В. множество датчиков, устройств, механизмов и приводов, которые обязательно имеют доступ к глобальной сети Интернет;
- С. облачный сервис обработки данных, поступающих от различных «умных» устройств;
- D. способы взаимодействия физических объектов, устройств и систем между собой и с окружающим миром с применением различных технологий связи и стандартов
- 7. Годы реального появления «Интернета вещей» по версии компании Cisco:
- А. 1999 год, когда один из исследователей RFID-технологий Кевин Эштон, возможно, впервые употребил словосочетание «Интернет вещей» (Internet of Things, IoT);
- В. 1982 год, когда к сети был подключен вендинговый автомат по продаже Coca-Cola, установленный в Университете Карнеги-Меллона;
- С. 2008-2009 годы, когда количество подключенных к сети устройств превысило количество жителей Земли;
 - D. 1983 год, когда зародился современный Интернет.
 - 8. IoT платформа это:
- А. комплекс программ, которые применяются для подключения различных интернет вещей к облачной инфраструктуре хранения информации и предоставления удаленного доступа к ним;
- В. специальная, установленная на конечном устройстве пользователя, программа;
- С. специальный комплекс программ для программирования интернетвешей:
 - D. облачное хранение данных.
 - 9. Микроконтроллер Arduino это:
 - А. образовательный проект, появившийся в Италии в начале 2000-х;
 - В. все ответы верны;
 - С. популярный и недорогой микроконтроллер, для которого

существует большое количество периферийных электронных компонентов, позволяющих создать широкий круг электронных устройств для разных сфер применения;

- D. микроконтроллер, для программирования которого могут использоваться среды Arduino IDE, S4A, Visual Studio Code, Eclipse AVR, XOD и многие другие.
 - 10. Fritzing это программное обеспечение:
 - А. для прототипирования электронных устройств;
- В. с открытым исходным кодом для моделирования электрических цепей и схем;
- С. для преобразования прототипа на основе Arduino в топологию печатной платы для серийного изготовления;

D. все ответы верны

Рабочая программа модуля № 2.

Проектирование устройств на основе микроконтроллера Arduino

2.1. Введение в Интернет вещей (ІоТ). История. Основные понятия и технологии.

История появления понятия «Интернет вещей», основные подходы к определению. История развития. Сферы применения технологий Интернета вещей. Рынок Интернета вещей. Технологии и платформы Интернета вещей (средства идентификации, средства измерения, средства передачи данных). Преимущества и недостатки технологии ІоТ. Области применения технологии ІоТ (потребительская, промышленная, инфраструктурная, военная). Прогнозируемое будущее технологии и тенденции развития.

2.2. Микроконтроллер Arduino. Среды программирования Arduino IDE и S4A. Использование макетной платы и различных электронных компонентов для реализации проектов.

Микроконтроллер Arduino, разновидности функциональные И возможности платы. Установка И настройка сред программирования микроконтроллера Arduino – Arduino IDE и S4A, установка драйвера. Особенности языка программирования, способы компиляции и загрузки кода в микроконтроллер, знакомство с примерами готовых программ. Основы построения электрической цепи. Цифровые входы и выходы и ШИМ. Светодиод. Беспаечная макетная плата. Резистор. Проект «Светофор». Датчики (разновидности датчиков, свойства, подключение). Работа со звуками. Проект «Охранная сигнализация». Подключение микроконтроллера к компьютеру посредством SoftwareSerial. Шаговый двигатель. Серводвигатель. Проект «Защита от протечек воды». Использование Bluetooth. Ультразвуковой датчик расстояния как способ организации «жесткой сцепки». Техника безопасности и охрана труда при работе с электронными устройствами.

2.3. Виртуальное моделирование электрических цепей, схем и электронного оборудования с помощью программного обеспечения Fritzing.

Установка и настройка программного обеспечения Fritzing, добавление библиотек и компонентов. Функциональные возможности и инструменты Fritzing. Прототипирование проекта на базе микроконтроллера Arduino. Создание собственного электронного компонента.

2.4. Использование сервиса iocontrol.ru для управления микроконтроллерами через Интернет.

Облачный сервис для управления интернетом вещей iocontrol.ru. Функционал платформы, подключение и настройка микроконтроллера Arduino для работы с платформой, использование API сервиса. Технические стандарты, ограничения и требования сервиса. Создание и настройка переменных сервиса. Примеры проектов управления микроконтроллером Arduino с помощью сервиса iocontrol.ru. Проект по чтению и записи переменной-кнопки. Проект чтения и записи изображения матрицы 8х8 из Arduino UNO на сайт.

2.5. Методические аспекты реализации образовательных программ по основам Интернета вещей и Arduino.

Особенности построения рабочей программы. Выбор содержательной части программы. Учет возрастных особенностей обучающихся при реализации учебной программы. Формы и виды учебной деятельности, проектный подход как основной подход к обучению, особенности оценивания деятельности обучающихся при проектной деятельности. Материально — технические и кадровые условия реализации программы. Особенности реализации программы с применением дистанционных образовательных технологий и электронных средств обучения. Участие в соревновательных мероприятиях по ІоТ.

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

Итоговая аттестация проводится в форме зачета, включающего тестирование и выполнение итогового проекта.

Тестовое задание для проведения итоговой аттестации:

- 1. Функция void setup() в программе для микроконтроллера Arduino:
- А. все ответы верны;
- В. необходима для инициализации системы электронного устройства на базе Arduino;
 - С. для выполнения команд в ней в момент загрузки микроконтроллера;
 - D. выполняется только один раз при старте системы.
 - 2. Фрагмент программы void setup() {pinMode(12, OUTPUT);}выполняет:
- А. инициализирует цифровой 12 пин микроконтроллера как вывод;
 - В. подает 0 вольт на 12 пин микроконтроллера;
 - С. отключает 12 пин микроконтроллера;
 - 3. Правильное подключение светодиода:
- **А.** Длинная ножка (анод) к «минусу» питания, короткая ножка (катод) к «плюсу»;
- В. Длинная ножка (анод) к «плюсу» питания, короткая ножка (катод) к «минусу»;
- С. Длинная ножка (катод) к «плюсу» питания, короткая ножка (анод) к «минусу».
- 4. Светодиод, последовательно подключенный со светодиодом используется:
 - А. Для уменьшения силы тока, текущего через светодиод.
 - В. Для увеличения силы тока, текущего через светодиод;
 - С. Для увеличения яркости свечения светодиода.
 - 5. Выполнение данной программы приведет к:

```
void setup() {
 pinMode(2, OUTPUT);
 pinMode(3, OUTPUT);
 digitalWrite(2, LOW);
 digitalWrite(3, LOW);
}
```

```
void loop() {
  digitalWrite(2, HIGH);
  digitalWrite(3, HIGH);
}
```

- А. Напряжение на 2 и 3 пинах будет включаться и выключаться;
- В. Будет выключено напряжения на 2 пине, затем оно будет включено на 3 пине;
 - С. Будет включено напряжение на 2 пине, а затем на 3 пине.
 - 6. Функция delay(n):
 - А. останавливает выполнение программы на п миллисекунд;
 - В. останавливает выполнение программы на п секунд;
 - С. останавливает мигание светодиода на п миллисекунд.
- 7. Наиболее эффективный вид учебной деятельности при реализации образовательной программы по Интернету вещей и Arduino это:
 - А. проектная деятельность;
 - В. игровая деятельность;
 - С. решения теоретических задач по электротехнике;
 - D. участие в соревнованиях по IoT.
 - 8. Плата Arduino UNO содержит:
 - А. 14 цифровых и 6 аналоговых пинов;
 - В. 14 аналоговых и 6 цифровых пинов;
 - С. 6 аналоговых и 6 цифровых пинов;
- 9. Для считывания значений с аналогового входа Arduino используется команда:
 - A. analogRead();
 - B. pinMode();
 - C. analogWrite();
 - D. digitalRead().
 - 10. Ошибка отсутствует в следующе строчке
 - A. if (push==1) digitalWrite(13,HIGH);
 - B. if (push>1); digitalWrite(13,HIGH);
 - C. if (push>=1) digitalRead(13,HIGH);
 - D. if (push>=1) analogRead(13,500);
 - 11. К индустриальному интернету вещей относится
 - А. Фитнес-браслет;
- В. Мониторинг открытия канализационных люков, автоматизированный магазин без кассиров и продавцов;
 - С. «Умная» домашняя колонка от Яндекс;
 - D. Автополив домашних растений.

- 12. Устройство не может быть частью системы интернета вещей без следующих элементов
- А. Датчик, исполнительное устройство, батарея или иной источник питания;
- В. Батарея или иной источник питания, микроконтроллер, радиомодуль;
- С. Исполнительное устройство, батарея или иной источник питания, микроконтроллер.
 - 13. Факторы, учитываемые при выборе датчика:
 - А. Все факторы;
 - В. Энергоэффективность;
 - С. Габариты;
 - D. Точность измерений;
 - Е. Диапазон измерений.
 - 14. Порядок защиты всей системы интернета вещей:
 - А. Использовать услуги специалистов и готовые решения;
- В. Написать и использовать собственную систему шифрования и зашиты:
 - С. Установить антивирус на все устройства и серверы;
- 15. Не обязательный элемент умного замка, который открывается с телефона при помощи Bluetooth-команды:
 - А. Исполнительное устройство;
 - В. Датчик;
 - С. Батарея или другой источник питания;
 - D. Микроконтроллер;
 - Е. Радиомодуль.

Разработка итогового проекта.

Варианты тем для итогового проекта (на выбор):

- 1. Проект «Ночной светильник». Необходимо реализовать проект, в котором светодиод должен включаться при падении уровня освещенности ниже порога, заданного потенциометром.
- 2. Проект «Кто быстрее». Необходимо реализовать проект на реакцию, в котором используется 2 тактовые кнопки и побеждает тот, кто быстрее нажмет свою кнопку.
- 3. Проект «Комнатный термометр». Необходимо реализовать проект, в котором данные с датчика температуры передаются в последовательный порт компьютера.
- 4. Проект «Комнатный барометр». Необходимо реализовать проект, в котором данные с датчика атмосферного давления передаются в

последовательный порт компьютера.

- 5. Проект «Умный полив». Необходимо реализовать проект, в котором растение поливается в зависимости от показаний датчика влажности почвы.
- 6. Проект «Тестер батареек». Необходимо реализовать проект, в котором данные о напряжении, измеренном на батарейке, выводятся на жидкокристаллический дисплей.
- 7. Проект «Охранная сигнализация холодильника». Необходимо реализовать проект, в котором подается звуковой сигнал в случае если открывается дверь холодильника в «запрещенное время».
- 8. Проект «Лазерная игрушка для кошек». Необходимо реализовать проект, в котором луч лазерного модуля случайным образом движется с помощью сервоприводов.
- 9. Проект «Робот, ездящий по черной линии». Необходимо реализовать проект, в котором двухколесный робот движется по черной линии, использую показания с двух датчиков линии.
- 10. Проект «Робот на пульте управления». Необходимо реализовать проект, в котором робот управляется с помощью смартфона, использую сигнал Bluetooth.

Список литературы и Интернет-ресурсов

- 1. Федеральный государственный образовательный стандарт основного общего образования (утвержден приказом Министерства образования и науки РФ от 17.12. 2010 г. № 1897 с изменениями и дополнениями от 29.12.2014 г., 31.12.2015 г.).
- 2. Горбунов А.А. Формирование субъектности подростков в личностно ориентированном образовании. Воронеж, 2005.
- 3. Психолого-педагогическое сопровождение образовательной среды в условиях внедрения новых образовательных стандартов [Электронный ресурс]: монография / И.С. Якиманская [и др.]. Оренбург: Оренбургский государственный университет, ЭБС АСВ, 2015. 124 с. [Электронный ресурс] URL: http://www.iprbookshop.ru/54149
- 4. Крылова О.Е., Бойцова Е.Н. Технология формирующего оценивания в современной школе. М.: КАРО, 2016. 208 с.
- 5. Кузнецова И. Генерация идей: как придумать не только новое, но и полезное: Методическое пособие. М., 2021.
- 6. Цифровая компетентность подростков и родителей: Результаты всероссийского исследования: [монография] / Г.У. Солдатова [и др.]; Фонд Развития Интернет, Фак. психологии МГУ им. М. В. Ломоносова. М.: Фонд Развития Интернет: Google, 2013. 143 с.
- 7. Зараменских Е.П., Артемьев И.Е. Интернет вещей. Исследования и область применения / Е.П. Зараменских, И.Е. Артемьев. М.: Инфра-М, 2016. 188 с.
- 8. Сэмюэл Грингард, Интернет вещей. Будущее уже здесь / Сэмюэл Грингард. М.: Альпина Паблишер, 2019. 188 с.
- 9. Улли Соммер Программирование микроконтроллерных плат. 2-е изд. / СПб.: БХВ-Петербург, 2017. 238 с.
- 10. Джереми Блум, Изучаем Arduino. Инструменты и методы технического волшебства / Джереми Блум СПб.: БХВ-Петербург, 2015. 336 с.

Электронные ресурсы

- 1. Документация для микроконтроллера Arduino Uno. [Электронный ресурс] URL: http://arduino.ru/Hardware/ArduinoBoardUno
- 2. Программирование микроконтроллера. [Электронный ресурс] URL: Arduino Uno.http://arduino.ru/Reference