

Для выполнения заданий 30, 31 используйте следующий перечень веществ: перманганат калия, гидрокарбонат натрия, сульфит натрия, сульфат бария, гидроксид калия, пероксид водорода. Допустимо использование водных растворов веществ.

- Из предложенного перечня веществ выберите вещества, между которыми окислительно-восстановительная реакция протекает с изменением цвета раствора. Выделение осадка или газа в ходе этой реакции не наблюдается. В ответе запишите уравнение только одной из возможных окислительно-восстановительных реакций с участием выбранных веществ. Составьте электронный баланс, укажите окислитель и восстановитель.
- Из предложенного перечня веществ выберите кислую соль и вещество, которое вступает с этой кислой солью в реакцию ионного обмена. Запишите молекулярное, полное и сокращённое ионное уравнения реакции с участием выбранных веществ.

Схемы окислительно-восстановительных реакций с участием веществ из предложенного перечня:

- 1) $KMnO_4 + Na_2SO_3 + KOH \rightarrow K_2MnO_4 + Na_2SO_4 + H_2O$
- 2) $KMnO_4 + Na_2SO_3 + H_2O \rightarrow MnO_2 + Na_2SO_4 + KOH$
- 3) $KMnO_4 + H_2O_2 \rightarrow MnO_2 + O_2 + KOH + H_2O$
- 4) $H_2O_2 + Na_2SO_3 \rightarrow Na_2SO_4 + H_2O$

Для выполнения заданий 30, 31 используйте следующий перечень веществ: перманганат калия, гидрокарбонат натрия, сульфит натрия, сульфат бария, гидроксид калия, пероксид водорода. Допустимо использование водных растворов веществ.

- Из предложенного перечня веществ выберите вещества, между которыми окислительно-восстановительная реакция протекает с изменением цвета раствора. Выделение осадка или газа в ходе этой реакции не наблюдается. В ответе запишите уравнение только одной из возможных окислительновосстановительных реакций с участием выбранных веществ. Составьте электронный баланс, укажите окислитель и восстановитель.
- Из предложенного перечня веществ выберите кислую соль и вещество, которое вступает с этой кислой солью в реакцию ионного обмена. Запишите молекулярное, полное и сокращённое ионное уравнения реакции с участием выбранных веществ.

- Схемы окислительно-восстановительных реакций о участием веществ из предложенного перечня:
 - 1) $KMnO_4 + Na_2SO_3 + KOH \rightarrow K_2MnO_4 + Na_2SO_4 + H_2O$
 - 2) $KMnO_4 + Na_2SO_3 + H_2O \rightarrow MnO_2 + Na_2SO_4 + KOH$
 - 3) $KMnO_4 + H_2O_2 \rightarrow MnO_2 + O_2 + KOH + H_2O$
 - 4) $H_2O_2 + Na_2SO_3 \rightarrow Na_2SO_4 + H_2O$
- Если в ответе к данному заданию будут приведены уравнения нескольких реакций, то проверяется только первое из них.

Содержание верного ответа и указания по оцениванию	Баллы
(допускаются иные формулировки ответа, не искажающие его смысла)	
Вариант ответа:	
$Na_2SO_3 + 2KMnO_4 + 2KOH = Na_2SO_4 + 2K_2MnO_4 + H_2O$	
$2 Mn^{+7} + \bar{e} \rightarrow Mn^{+6}$	
$1 S^{+4} - 2\bar{e} \rightarrow S^{+6}$	
Сульфит натрия (или сера в степени окисления +4) является	
восстановителем.	
Перманганат калия (или марганец в степени окисления +7) -	
окислителем	
Ответ правильный и полный, содержит следующие элементы:	2
• выбраны вещества, и записано уравнение окислительно-	
восстановительной реакции;	
• составлен электронный баланс, указаны окислитель и	
восстановитель	
Правильно записан один элемент ответа	1
Все элементы ответа записаны неверно	0
Максимальный балл	2

- •в качестве исходных веществ (окислителя и восстановителя) могут быть использованы только вещества из предложенного списка (вода используется в качестве среды протекания реакций);
- •реакции разложения сложных веществ не могут быть приняты в качестве верного ответа, так как по условию задания требуется выбрать «вещества, между которыми...»)
- •реакции диспропорционирования, которые протекают с участием среды (раствора щелочи или кислоты), должны приниматься как возможный вариант ответа.

$$K_2Cr_2O_7 + KBr + H_2SO_4 \rightarrow Cr_2(SO_4)_3 + Br_2 + \dots$$

$$2Cr^{+6} + 6\bar{e} \rightarrow 2Cr^{+3}$$

$$2Br^{-1} - 2\bar{e} \rightarrow Br_2$$

или

$$Cr^{+6} + 3\bar{e} \rightarrow Cr^{+3}$$

$$Br - \bar{e} \rightarrow Br^0$$

или

$$2Cr^{+6} + 6\bar{e} \rightarrow 2Cr^{+3}$$

$$2Br - 2\bar{e} \rightarrow 2Br$$

Количество принятых и отданных электронов может быть указано над стрелкой.

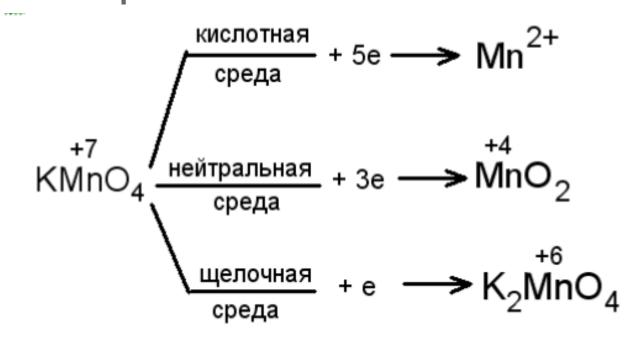
(Запись степени окисления «-» допустима)

<u>Недопустима</u> запись: Cr_2^{+6} + 6 \bar{e} → 2 Cr^{+3}

Такие обозначения степеней окисления как N^{5+} и N^{4+} (сначала цифра, затем знак) считаются неверными.

<u>Исключение</u>: у одноатомных ионов степень окисления равна заряду иона, поэтому такую как запись как

 Mg^{2+} + 2e = Mg^{0} следует считать верной (можно рассматривать как элемент электронно-ионного баланса);


- считать верными записи, подобные следующим «Cl-1», «Cl-», «2Cr³⁺», «Cr+6», которые экзаменуемый использовал при указании степени окисления;
- •степень окисления 0 может не указываться

Возможные уравнения реакции с азотной кислотой:

$$CuS + 8HNO_{3(\text{конц})} \rightarrow CuSO_4 + 8NO_2 + 4H_2O;$$
 можно так: $CuS + 10HNO_{3(\text{конц})} \rightarrow Cu(NO_3)_2 + H_2SO_4 + 8NO_2 + 4H_2O.$

При наличии взаимоисключающих записей, например, $Zn + 4HNO_3(pas6.) = Zn(NO_3)_2 + 2NO_2 + 2H_2O$, уравнение реакции считается составленым неверно.

Возможные уравнения реакций с перманганатом калия:

 $2KMnO_4 + 5KNO_2 + 3H_2SO_4 = 2MnSO_4 + 5KNO_3 + K_2SO_4 + 3H_2O$ $2KMnO_4 + KNO_2 + 2KOH = 2K_2MnO_4 + KNO_3 + H_2O$ $2KMnO_4 + 16 HCI = 2MnCI_2 + 5CI_2 + 2KCI + 8H_2O$

√Хроматы и дихроматы наще используют в кислой среде, восстановление протекает до соединений Cr(III):

$$K_2Cr_2O_7 + 3KNO_2 + 4H_2SO_4 = Cr_2(SO_4)_3 + 3KNO_3 + K_2SO_4 + 4H_2O_4$$

Важно, чтобы продукты реакции были выбраны с учетом характера среды:

$$2K_2CrO_4 + 3Zn + 8KOH + 8H_2O = 2K_3[Cr(OH)_6] + 3K_2[Zn(OH)_4]$$

$$3KNO_2 + K_2Cr_2O_7 + 4H_2O = 3KNO_3 + 2Cr(OH)_3 + 2KOH$$

При использовании кислородсодержащих соединений хлора в качестве окислителей атомы галогенов восстанавливаются до устойчивой степени окисления -1:

$$5KClO_3 + 6P = 5KCl + 3P_2O_5;$$

 $Cr_2O_3 + 3KClO + 4KOH = 2K_2CrO_4 + 3KCl + 2H_2O.$

 Ионные уравнения реакций отражают суть тех изменений, которые происходят при взаимодействии веществ электролитов.

Реакции в растворах электролитов идут практически до конца в том случае, если происходит связывание исходных ионов с образованием:

- слабого электролита,
- осадка малорастворимого вещества,
- газообразного продукта.

В ионном уравнении реакции хорошо растворимые сильные электролиты записывают в виде соответствующих ионов, а слабые электролиты, нерастворимые вещества и газы — в молекулярном виде.

В сокращённом ионном уравнении дробные или удвоенные коэффициенты не допускаются.

✓ Реакции образования гидроксокомплексов при взаимодействии растворов щелочей и растворимых солей цинка и алюминия также можно отнести к реакциям ионного обмена:

$$ZnSO_4 + 4NaOH = Na_2[Zn(OH)_4] + Na_2SO_4$$

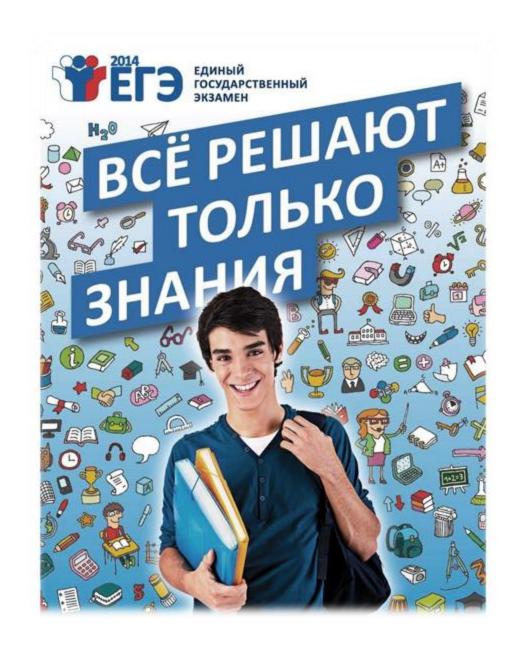
 $Zn^{2+} + SO_4^{2-} + 4Na^+ + 4OH^- =$
 $= 2Na^+ + [Zn(OH)_4]^{2-} + 2Na^+ + SO_4^{2-}$
 $Zn^{2+} + 4OH^- = [Zn(OH)_4]^{2-}$

! В случае H_2SO_4 возможны записи как $2H^+ + SO_4^{2-}$, так и H^+ и HSO_4^-

В случае H_3PO_4 возможны записи как $H^+ + H_2PO_4^-$, так и H_3PO_4 <u>Кислые соли</u> диссоциируют ступенчато, например:

 $NaHSO_3 \rightarrow Na^+ + HSO_3^-$ (первая ступень);

 $HSO_3^- \leftrightarrows H^+ + SO_3^{2-}$ (вторая ступень).


В ионном уравнении используется записи типа $Na^+ + HSO_3^-$

! В случае гидросульфатов возможны записи типа

как $Na^+ + H^+ + SO_4^{2-}$, так и Na^+ и HSO_4^-

! При взаимодействии солей аммония со щелочами допустимы записи $NH_3 \cdot H_2O$, $NH_3 + H_2O$ (нежелательно, но пока можно NH_4OH)

Спасибо за внимание!

