ХИМИЯ ИТОГИ ЕГЭ-2025 Перспективы ЕГЭ-2026

Председатель ПК по химии, д.п.н., проф. СмолГУ *Миренкова Елена Васильевна* mirenkowa.elena@yandex.ru

ИТОГИ ЕГЭ-2025

Количество участников ЕГЭ по химии (за 3 года)

2023 г.		2024 г.		2025 г.	
чел.	% от общего числа участников	чел.	% от общего числа участников	чел.	% от общего числа участников
450	12,07	493	12,79	569	15,03

• Тенденция:

Небольшой/осторожный оптимизм

ИТОГИ ЕГЭ-2025

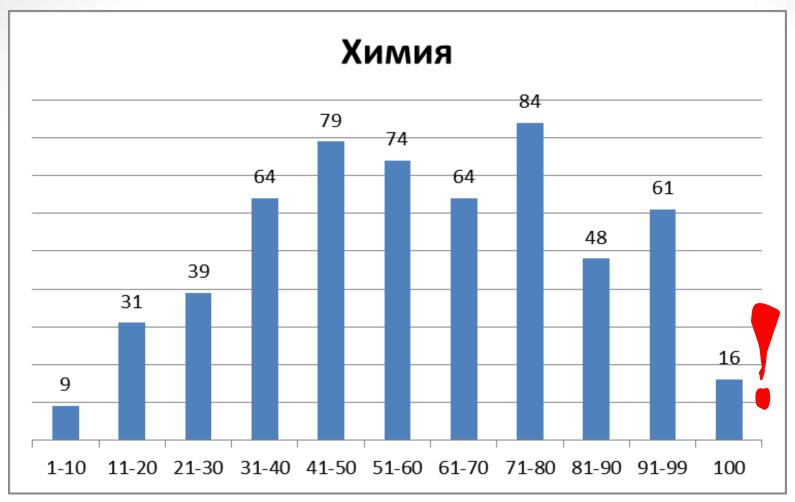


Диаграмма распределения тестовых баллов по химии в 2025 г.

ИТОГИ ЕГЭ-2025

V		Смоленская область		
Участников, набравших балл	2023 г.	2024 г.	2025 г	
ниже минимального балла, %	14,4	17,0	~ 14%↓	
от минимального балла до 60 баллов, %	36,7	35,1		
от 61 до 80 баллов, %	29,3	28,0		
от 81 до 100 баллов, %	18,7	19,9	~ 22%↑	
100 баллов, чел.	4	4	16 ↑	
Средний тестовый балл	59,1	58,3	59,6 ↑	

Результаты ЕГЭ по химии в Смоленской области на **1,5** балла **выше** среднестатистических: 59,6 против 58,1 (согласно данным Рособрнадзора).

Наша гордость

Григорьев Тимофей

Гимназия №1 имени Пржевальского (досрочный период)

Мизеркина София

г. Рудня Смоленской области

Медун Инга

Лицей имени Кирилла и Мефодия

Соломанова Виктория

Гимназия № 4 г. Смоленска

И др.

Молодцы!

Итоги нововведений-2024 -2025

Успешность результатов пересдачи снижается:

	Всего, человек (% от всех участников)	Без изменений	Понизили результат	Повысили результат
2025	58	6	15	37
2025, %	11,4%	10%	26%	64%
2024	48	2	10	36
2024, %	9,7%	4%	21%	75%

Возможные причины неудач и положительной динамики пересдачи

- □Экзамен по химии первый среди экзаменов ЕГЭ.
- □Отсутствие психологической готовности/настроя участников.
- □Недостаточно серьезное отношение к процедуре
- Завышенная самооценка.
 - Включение в систематический режим экзамена, умение сконцентрироваться на решении проблем/заданий.
 - Дополнительный резерв времени на подготовку и его грамотное использование.
 - > Учет собственного опыта и опыта других участников.

 Задание базового уровня 28, выявляющее умения решать комбинированные расчетные задачи по уравнениям реакций.

Средний процент его выполнения сохраняет стабильность в сравнении с прошлым годом и составляет 46%. С ним справились 3% в группе не преодолевших минимальный балл, 16% в группе от минимального до 60 т.б. и почти 92% высокобалльников.

Вывод: задание имеет высокую дифференцирующую силу.

Расчетная химическая задача имеет 2 стороны: химическую и математическую.

Причины низких результатов?

Комплексные: недостаточное знание предмета химии (составление химических формул и уравнений реакций) + слабое владение математическим аппаратом.

Пример

 При нагревании 132 г сульфата аммония с избытком гидроксида кальция было получено 38,08 л газа (н.у.). Определите выход продукта реакции в процентах от теоретически возможного.

Дано:

- Macca $(NH_4)_2SO_4 = 132 \text{ r}$
- Объём полученного газа = 38,08 л
- Реакция: (NH₄)₂SO₄+Ca(OH)₂→CaSO₄+2NH₃+2H₂O

Решение:

- Найдём количество вещества:
 М((NH₄)₂SO₄)=132 г/моль; n=m /M=132/132=1 моль
- По уравнению реакции:
 - 1 моль $(NH_4)_2SO_4$ даёт 2 моль NH_3 . Значит, теоретически должно получиться 2 моль NH_3 .
- Найдём теоретический объём аммиака: V_{теор}=2⋅22,4=44,8 л (при н.у.)
- Вычислим выход продукта:
 η=Vпракт/Vтеор⋅100%=38,08/44,8⋅100%=85%

- Задание высокого уровня сложности 34. Средний процент выполнения 16 % (годом ранее 15%). Это расчетная задача высокого уровня сложности, комплексно проверяющая владение многими химическими понятиями и умениями.
- Задание *высокого* уровня 33 (хуже в сравнении с 2024 г).

Результаты	Средний,	в группе не	в группе от	в группе	в группе
выполнения	%	преодолевших	минимальн	от 61 до	от 81 до
задания 33		минимальный	ого до 60	80 т.б.	100 т.б.
		балл, %	т.б.		
2025 год	30,81	0,76	5,23 ↓	33,79 ↓	86,83 👃
2024 год	46,39	0,00	19,23	65,67	95,49

Вывод

- •У большинства испытуемых слабо сформированы умения осуществлять комбинированные химические расчеты, т.е. производить цепочку взаимосвязанных математических действий.
- Слабо сформированы умения анализировать, рассуждать.

Пример

- Для проведения электролиза (на инертных электродах) взяли 750 мл раствора сульфата меди(II) с концентрацией 0,8 моль/л и плотностью 1,08 г/мл. После того как на аноде выделилось 4,48 л (н.у.) газа, процесс остановили. К образовавшемуся в процессе электролиза раствору добавили 500 мл раствора гидроксида натрия с концентрацией 3,2 моль/л и плотностью 1,25 г/мл. Определите массовую долю щёлочи в полученном растворе.
- В ответе запишите уравнения реакций, которые указаны в условии задачи, и приведите все необходимые вычисления (указывайте единицы измерения искомых физических величин)

Пример

- □При сгорании органического вещества А массой 5,74 г получили 6,272 л углекислого газа (н.у.), 1,46 г хлороводорода, 448 мл азота (н.у.) и 3,24 г воды. Вещество А образуется при действии хлорметана на вещество Б. На основании данных условия задачи:
 - 1) проведите необходимые вычисления (указывайте единицы измерения искомых физических величин) и установите молекулярную формулу вещества А;
 - 2) составьте структурную формулу вещества А, которая однозначно отражает
 - порядок связи атомов в его молекуле;
 - 3) напишите уравнение реакции получения вещества А из вещества Б и хлорметана (используйте структурные формулы органических веществ).
- □ Простейшая формула вещества C₇H₁₀NCI.

Задание 1 – проверяет знания строения атома

Совет: внимательно читать текст условия!

Пример 1. 1) **Na** 2) S 3) F 4) **V** 5) Si Определите, атомы каких из указанных в ряду элементов в основном состоянии **не содержат** неспаренных *p*-электронов.

Пример 2. 1) N 2) **Mn** 3) **Ca** 4) Br 5) F Определите, атомы каких из указанных в ряду элементов в основном состоянии имеют одинаковую электронную конфигурацию внешнего энергетического уровня.

Задание 5 — проверяет знания классификации и номенклатуры неорганических веществ.

Пример 3.

Особенность: заданы как формулы, так и названия неорганических веществ, в том числе тривиальные.

Среди предложенных формул/названий веществ, расположенных в пронумерованных ячейках, выберите формулы/названия:

- А) слабой кислоты;
- Б) щёлочи;
- В) амфотерного гидроксида.

Mg(OH) ₂	Cr(OH) ₃	3 сероводородная кислота
4 Mn(OH) ₂	5 HNO ₃	6 Ba(OH) ₂
7 бромоводородная кислота	8 хлорная кислота	9 Cr ₂ O ₃

Задание 7 – химические свойства неорганических веществ
 Пример 4.

Установите соответствие между веществом и реагентами, с каждым из которых это вещество может взаимодействовать: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

ВЕЩЕСТВО	РЕАГЕНТЫ
A) Al	1) Al ₂ O ₃ , H ₂ O, C
Б) CaO	→ 2) MgCl ₂ , SO ₂ , CO ₂
B) KOH	3) KCl, H ₂ SO ₄ (p-p), NaOH
Γ) NaHCO ₃	4) HCl, NaOH, H ₂ SO ₄ (p-p)
	5) Fe, S, O ₂

Задание 9 – генетическая связь

Пример 5.

В схеме превращений

$$X \xrightarrow{\text{AgNO}_3} Y \to \text{CuO}$$

веществами Х и У соответственно являются

- Cu(OH)₂
- 2) CuBr₂
- 3) Cu(NO₃)₂
 - 4) CuS
 - 5) CuCO₃

Задание 15 — химические свойства органических веществ **Пример 6.**

Установите соответствие между химической реакцией и углеродсодержащим продуктом, который преимущественно образуется в этой реакции: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

ХИМИЧЕСКАЯ РЕАКЦИЯ	ПРОДУКТ РЕАКЦИИ
А) окисление формальдегида	1) CH ₃ CHO
Б) гидрирование ацетальдегида	2) CH ₃ COOH
В) дегидратация метанола	3) HCHO
Г) гидролиз этилата натрия	4) CH ₃ CH ₂ OH
	5) CH ₃ OCH ₃
	6) CO ₂

Задание 13 – биологически важные орг.соединения

Пример 7.

- Из предложенного перечня выберите две пары веществ, в результате взаимодействия которых образуется соль вторичного амина.
- 1) метиламин и хлорметан
- 2) метилэтиламин и хлороводород
- 3) анилин и серная кислота
- 4) нитробензол и водород
- 5) диэтиламин и хлорэтан

Пример 8.

Из предложенного перечня выберите два вещества, с которыми **не реагирует** аминоуксусная кислота.

1) медь 2) аланин 3) метан 4) метанол 5) серная кислота

Задание 24 – качественные реакции

Пример 9.

Установите соответствие между реагирующими веществами и признаком реакции:

РЕАГИРУЮЩИЕ ВЕЩЕСТВА	ПРИЗНАК РЕАКЦИИ
A) $AI(OH)_3$ и KOH (p-p) Б) HNO_3 (p-p) и K_2CO_3 (p-p) В) $K_2Cr_2O_7$ (p-p) и $NaOH$ (p-p) Г) $Zn(OH)_2$ и HNO_3 (p-p)	1) Выделение бурого газа 2) растворение осадка 3) выделение бесцветного газа 4)изменение цвета раствора 5) образование осадка

Причины неудач:

- сокращение реального химического эксперимента в учебном процессе;
- недостаточно внимательная работа с таблицей растворимости;
- незнание отдельных фактов.

Задание 16. Объект контроля: Генетическая связь органических веществ.

Пример 10.

Задана схема превращений веществ:

$$CH_4 \xrightarrow{t^\circ} X \to Y \xrightarrow{[Ag(NH_3)_2]OH, t^\circ} CH_3COONH_4$$

Определите, какие из указанных веществ являются веществами X и Y.

- этан
- этанол
- 3) этаналь
 - 4) этилен
- 5) ацетилен

Типичные ошибки

- □ При выполнении заданий 29 и 30 не учитывали предъявленные требования, либо соблюдали не все. Имело место искажение требований в виде использования веществ, не заданных контекстом условия задачи.
- □Продуктом реакции термического разложения нитрата меди (II) указывали медь, а не оксид меди.

$$\square 2Cu(NO_3)_2 = 2CuO + 4NO_2 + O_2$$

□Составляли уравнение реакции взаимодействия меди с бромоводородной кислотой с выделением водорода.

- □Аналогично брому, считали нерастворимой в воде бромоводородную кислоту.
- □Реакцию оксида железа(III) с азотной кислотой рассматривали как окислительно-восстановтельную.

-
$$Fe_2O_3+6HNO_3=2Fe(NO_3)_3+3H_2O$$

Типичные ошибки (частные)

□Неверно составляли электронный баланс и РИО с участием пероксида водорода.

 $\Box H_2O_2$ не электролит! 2O-1

- □Окрашенным *простым* веществом считали оксид азота(IV).
- □ Гидроксид хрома(II) в *кислой* среде окисляли до гидроксида хрома(III).
- □Осуществимой считали реакцию взаимодействия карбоната магния с гидроксидом калия.

Типичные ошибки (частные)

- □ Путали коэффициенты 3 и 4 в реакциях дегидрирования с участием алканов и циклоалканов.
- □В реакциях бромирования метилциклогексана продуктом реакции указывали 1-метил-2-бромциклогексан вместо 1-метил-1-бромциклогексана.

(имело место перенесение закономерностей протекания реакций с одного класса веществ на другой)

$$H_3C - \left(\right) + Br_2 \xrightarrow{hv} \frac{Br}{H_3C} \left(\right) + HBr$$

Типичные ошибки (частные)

- □Неверно указывали продукты реакции между карбоновыми кислотами и аминами.
- □Путали термины: *вторичные* спирты ≠ *двухатомные* спирты ≠ *этанол* (с двухуглеродной молекулой).

Пропанол-2 CH_3 –CHOH– CH_3

Этиленгликоль (этандиол) CH₂OH–CH₂OH

Этанол CH_3 – CH_2OH

□ Составляли уравнения реакций вытеснения уксусной кислотой соляную из ее аммонийных солей. (не учитывали силу кислот)

Изменения в ЕГЭ-2026

В целом в 2026 году структура КИМ в ЕГЭ по химии не поменялась.

- Из содержания задания №4 (Виды химической связи и механизмы ее образования) исключена тема - характеристики ковалентной связи.
- Расширен список простых веществ, знание свойств которых могут пригодится для решения задания №6 (пробирки, X,У).
- Для решения задания №11 (основные положения ТХС органических соединений А.М. Бутлерова) понадобятся знания об углеродном скелете органического вещества.
- В заданиях №12-13 обратить внимание на тему жиры, мыла.
- Задание же №21 включена тема «ионное произведения воды».
- В задание №26 вместе с массовой долей введено понятие «молярность».
- В задание №34 также включена «молярность».

Примеры

- 1. 1) F 2) Mg 3) Br 4) Zn 5) H Определите два элемента, которым соответствуют *ионы*, имеющие столько же *s*-электронов, сколько и атом неона
- 2. ОБЩАЯ ФОРМУЛА
 - A) CnH2nO2
 - Б) CnH2nO
 - B) CnH2n-2O

Вещество: 1) гексановая кислота

- 2) циклогексанол
- 3) гексанол-1
- 4) циклогексанон

ΕΓ3-2026

Изменений в модели работы и в моделях заданий практически **нет**.

Стабильность. Это хорошо или плохо?

1 июня 2026 г – основной этап ЕГЭ по химии

Удачи нашим выпускникам!

Спасибо за внимание!